

30

NIRS/QST 松藤成弘

照射システム(WOBBLING METHOD) Flatness monitor Ridge filter Sub mo Multi-leaf collimator Range shifte Bohu 8500 Komori M. et al ; J. Jap. Appl. Phys. 53

53

NIRS/QST 松藤成弘

<section-header><section-header><image><image><image><image>

63

65

まとめ(PASSIVE BEAM) ^{患者ごとの補償材、コリメータが必須}

思ることの補資料、コリメーマが必須 ビーム利用効率が乏しい ビームの位置ずれ、一定範囲内の標的の移動(呼吸、心拍)に対して 強い 長く使われており、技術が成熟している

RANGE SHIFTER SCANNING PSI, Gantry-1 1) Range shifter scanning 適当な厚さのエネルギー吸収体(プラスティック板)を挿入 してBragg peakの位置を調整する E. Pedroni, PTCOG education, 2008 75

ENERGY SCANNING 2-A) Multiple flattop operation 2-B) Cycle-by-cycle energy change Synchrotron 150MeV 145MeV 140MeV 135MeV Beam ON/OFF 2) Energy scanning 加速器の出射エネルギーを直接変更して Bragg peakの深さを調整する 1 2-C) Degrader & cyclotron 5 mm/150ms range shift in PSI

78

76

75

重粒子線治療の歴史 1940's アイデアの提唱(Dr. Robert 1970's 米国・LBL 世界初の重イオン(Ne)治療(Berkeley~1993) 1994 故医研·HIMAC 炭素線治療開始 1997 ドイツ・GSI 炭素線治療開始 (Darmstadt ~2005) 兵庫県立粒子線医療センター・HIBMC 炭素線治療開始 2002 2003 粒子線治療が先進医療に認定 2009 ドイツ・HIT 炭素線治療開始 (Heidelberg) 2010 群馬大学·GHMC 炭素線治療開始 2010 群馬大学・GHMC 炭素線治療開始 (Pavia) 放医研・HIMAC スキャニングシステム稼働開始(千葉) 2011 佐賀・HIMAT 炭素線治療開始(鳥栖) 2013 2014 L海病院・SPHIC 炭素線治療開始(上海) 2015 神奈川県立がんセンター・iRoCK 炭素線治療開始(横浜) 2015 ドイツ・MIT 炭素線治療開始 (Marburg) 2016 手術不適応骨軟部腫瘍に対する炭素線治療が保険収載 頭頸部がん、前立腺がんに対する炭素線治療が保険収載 2018 2018 大阪重粒子センター・HIMAK 炭素線治療開始予定(大阪) 78

NIRS/QST 松藤成弘

