

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><text>

原子核·量子線工学特別講義 I-中

線量計測量 DOSIMETRY 物質の単位質量中におけるエネルギーの授受を表す量 <mark>と収線量 D [J/kg, Gy] 全ての電離放射線</mark> $D = \frac{dE}{dm}$ カーマ K [J/kg, Gy] 中性子、光子(間接電離放射線) $K = \frac{dE_{tr}}{dm} = K_c + K_r$ ◎ 照射線量 X [C/kg, R] 光子 $X = \frac{dQ}{dm}$

7

8

生	E物影響	を決定す	る基本は	単位 (2)					
CHO細胞を細胞死に至らせる線量									
		福旭901年17月隙の部位別吸収線重 [Gy]							
		細胞核	細胞質	細胞膜					
	X線	3.3	3.3	3.3					
DNAに結合	³ H Thymidine	3.8	0.27	0.01					
細胞膜に結	合 125I	4.1	24.7	516.7					
	Concanavalin								

DNA損傷形態と細胞死 CHO細胞の致死線量(LD₅₀)の増減との相関 修飾要素 SSB Base cross link 細胞死 DSB 高LET _ 放射線 低酸素 0 環境 チオール 薬剤 0 温熱 0 0 0 過酸化 0 0 水素 45

45

47

原子核·量子線工学特別講義 I-中

再分布 アポトーシス誘導 ・G2期からM期では放射線感受性が高い
→ この期間の細胞群が相対的に多く死亡 G1 ・生存細胞はG2ブロックで修復を受ける →同調 S期 間期 Go期 分裂体。 た数数時子 分裂期 S期 G2期 M期 細胞分裂の1周期 G1期 M期 G2 75

75

77

生体影響(治療)の単位 RBE荷重線量 $D_{clinical}[Gy(RBE)] = RBE \cdot D[Gy]$ $H[Sv] = Q \cdot D[Gy]$ GyE→Gy(RBE) → Gy?? 放射線管理(防護)のための単位 •等価線量 equivalent dose $H_T[Sv] = W_R \cdot D_T[Gy]$ 組織の局所的な被曝量を表す量 $W_R: 放射線荷重係数$ •実効線量 effective dose $E[Sv] = \sum_T W_T \cdot H_T[Sv]$ 個人全身の生物学的リスクの尺度となる量 $W_T: 組織荷重係数$ •線量当量 dose equivalent $H[Sv] = Q \cdot D[Gy]$ こ:線質係数

98

97

97

荷重	重係数の	比較	*ICRP103(2007 年勧 f	告)で若干の変更あり
放射線の種類	エネルギー範囲	W _R (ICRP60)*	RBE (放射線治療)	
光子	全エネルギー	1	1	
軽粒子 (電子、µなど)	全エネルギー	1		詳細:
	E<10keV	5		ICRP Publication 92
	10keV <e<100kev< td=""><td>10</td><td></td><td>生物効果比(BBF)</td></e<100kev<>	10		生物効果比(BBF)
中性子	100keV <e<2mev< td=""><td>20</td><td></td><td>線質係数(Q)</td></e<2mev<>	20		線質係数(Q)
	2MeV <e<20mev< td=""><td>10</td><td></td><td>及び放射線何重建致(wa)</td></e<20mev<>	10		及び放射線何重建致(wa)
	E>20MeV	5	3	
陽子 (反跳陽子を除く)	E>2MeV	5	1.1	
α粒子、核分裂片、 重原子核		20	2~3	
				99

99

101

100

TDRAのパラメータ $S = exp[-\mathbf{k}(\boldsymbol{\xi}D + D^2)]$ k: 亜致死性損傷の相互作用度 二つの亜致死性損傷が有感領域内 二つの亜致死性損傷が十分離れている ≠0 =0 ξ: 単ートラックによる損傷の線量あたりの増分 放射線の種類、サイトの大きさに依存 *kξD:* **"intratrack**" action kD² : "inter-track" action 12

121

123

124

