九州大学講義, 2015年9月24-25日

分離変換技術開発と核データ研究の展望

(4) ADSの研究課題(1) - 加速器、未臨界炉システムのパラメータ等 -

深 堀 智 生 日本原子力研究開発機構 原子力基礎工学研究センター

ADS実用化に向けたロードマップ

Japan Atomic Energy Agency (

□ 米国

- ▶ オバマ政権は、ヤッカマウンテン処分場見直しを表明。
 ▶ <u>ブルー・リボン・パネル</u>を設けて、今後の政策を検討。→中間貯蔵へ
 ▶ レーザー核融合を中性子源としたハイブリッド核変換等の検討も進捗。
- □ フランス
 - > 2006年の「廃棄物管理研究法」に基づき、ADSとFBRの両方を並行して研究。
 - ▶ 2012年の「長寿命放射性元素の分離・核変換研究」報告書で、2020年にプロ トタイプを建設するオプションとして高速炉を選択。
- ロベルギー
 - 老朽化した照射炉(BR2)の代替として、50MW程度の出力を持つ照射用ADS である<u>MYRRHAの2016年頃の着工</u>を目指している。
 - 杉変換実験、鉛合金高速炉開発、燃料・材料照射、RI製造等が目的。
- □欧州
 - 様々な原子力政策の国が集まるが、廃棄物処分の負担軽減のニーズは一致。
 7次<u>欧州枠組みプログラム(FP7)</u>において分離変換技術に関連する様々な 研究開発プロジェクトを展開し、研究者・技術者の育成にも活用。

□ 中国

ウラン資源の利用率の向上を目的としたFBR開発と、核変換を目的としたADSの 研究開発を推進。

ロインド

トリウム資源の利用を狙ったADSの研究を実施中。

OECD/NEA、IAEA

分離変換技術に関する情報交換会議やベンチマーク活動を主催

ADSの技術開発課題

Japan Atomic Energy Agency ((JAEA

超電導加速器技術

- ・高い加速電界達成を確認
- ・大強度で信頼性の高い加速器の開発が必要

<u>ニオブ製の超伝導空洞</u>

鉛ビスマス技術

・FBR開発で培った液体金属技術(可視化、計測、純度管理等)を応用

ビーム窓模擬ループのオーバーフロー部の流況

ビーム窓

・陽子・中性子で照射されるので寿命の評価が必要

<u>MEGAPIE国際共同実験(スイスPSIで実施)の鉛ビスマスターゲット</u> と照射試験後のビーム窓部(照射後試験をJAEA等で実施中)

・運転制御の経験蓄積が必要 ・MAや鉛の核データの検証が必要

<u>FCA(JAEA)やKUCA(京都大学)を用いた炉物理実験</u>

Nucl. Data and Transmutation by ADS

Japan Atomic Energy Agency (((JA

ADS Standard Neutron Spectrum

Neutron Spectrum = FR + High Energy Component (3%)

It is important to consider effects of this component.

→ High Energy Fission Cross Section

→ Fission Yields in this energy region

9

High Energy Fission Cross Sections

Incident Neutron Energy [MeV]

Cross section in high energy region is rather larger than in FR one.
 In this energy region, number of fission neutrons is more.

Nucl. Data and Transmutation by ADS

Japan Atomic Energy Agency ((JAEA

High Energy Fission Cross Sections

Nucl. Data and Transmutation by ADS

Japan Atomic Energy Agency

High Energy Fission Cross Sections

Fission Product & Half-life

Half-Lives	FPs (FPY>0.1%)				
1y <t<sub>1/2<100y</t<sub>	⁸⁵ Kr(10.8), ⁹⁰ Sr(28.8), ^{93m} Nb(16.1), ¹⁰⁶ Ru(1.02), ^{121m} Sn(43.9), ¹²⁵ Sb(2.76), ¹³⁴ Cs(2.07), ¹³⁷ Cs(30.1), ¹⁴⁷ Pm(2.62), ¹⁵¹ Sm(90.0), ¹⁵⁵ Eu(4.75)				
100y <t<sub>1/2<10⁴y</t<sub>					
10 ⁴ y <t<sub>1/2<10⁶y</t<sub>	⁷⁹ Se(327k), ⁹⁹ Tc(211k), ¹²⁶ Sn(198k)				
10 ⁶ y <t<sub>1/2</t<sub>	⁹³ Zr(1.53M), ¹⁰⁷ Pd(6.50M), ¹²⁹ I(15.7M), ¹³⁵ Cs(2.30M)				

Fission Product Yields

Nuclides	²³⁵ U(F)	²³⁵ U(H)	²³⁹ Pu(F)	²³⁹ Pu(H)	²⁴¹ Am(F)	²⁴¹ Am(H)
^{121m} Sn	3.23E-05	8.57E-04	6.00E-05	1.37E-03	9.19E-05	1.72E-03
¹²⁵ Sb	6.78E-04	1.46E-02	1.78E-03	1.95E-02	1.93E-03	2.35E-02
¹³⁴ Cs	5.03E-08	9.12E-05	6.63E-06	4.44E-04	1.92E-05	2.28E-03
⁷⁹ Se	9.06E-04	1.69E-03	6.07E-04	8.67E-04	3.44E-04	1.07E-03
¹²⁶ Sn	9.70E-04	1.71E-02	2.63E-03	1.98E-02	2.50E-03	2.66E-02

JAEA Nuclear Data Center

Fission Product Yield

九州大学講義, 2015年9月24-25日

Japan Atomic Energy Agency (JAEA

Fission Product Yield

九州大学講義, 2015年9月24-25日