九州大学講義, 2015年9月24-25日

分離変換技術開発と核データ研究の展望

(3)加速器駆動炉(ADS)について

深 堀 智 生 日本原子力研究開発機構 原子力基礎工学研究センター

化学反応:反応の前後で物質の化学形態は変わるが、原子は不変

$2H_2 + O_2 \longrightarrow 2H_2O$

<u> 原子核反応</u>:反応の前後で原子が別の原子に変化する

①原子核の自発崩壊

不安定な原子核が高エネルギー粒子を放出して自発的に 他の核種に変換する(例:α崩壊、β崩壊、γ崩壊、自発核分裂)

$$137$$
Cs $\xrightarrow{\beta}$ 137 mBa $\xrightarrow{\gamma}$ 137 Ba $\xrightarrow{\gamma}$ 137 Ba
半減期:30.08年 半減期:2.552分

②原子核の衝突反応

原子核と粒子、あるいは原子核と原子核の衝突によって 起こる反応

¹⁰B + n \longrightarrow ⁷Li + ⁴He (α) ¹⁰B(n, α)⁷Li

原子核反応

原子核の変換(核変換)

原子核に働きかけて、異なる元素、核種(同位体)に変換すること。

- 中性子を用いる方法 → クーロン反発力が無く、比較的容易に核反応が起こる
 >中性子捕獲反応 (n, γ): 質量数が1増加。引き続き β 崩壊が起こることも。
 >中性子による核分裂反応 (n,f): 重核の核子の結合エネルギーを解放
 >非弾性散乱、その他の反応 (n,n')、(n,2n)、(n,3n): 一般に発生確率低い
- 熱核融合反応による方法 → クーロン反発力が大きく、高密度プラズマが必要

 DD反応、DT反応等。星の生成で重要な役割。
- 加速粒子(又はRI線源)による方法 → 粒子を加速し、ターゲットに当てる
 ▶陽子、重陽子、α粒子等 例: ⁷Li(p,n)⁷Be、³H(d,n)⁴He、⁹Be(α,n)¹²C
 ▶陽子による核破砕反応 ターゲット:鉛、タングステン、ウラン等の重核
 ▶重イオン反応 例: ¹⁶O+²³⁸U → ²⁵⁰Fm+••••

Japan Atomic Energy Agency ((JAEA

核変換の利用

- ◆ エネルギー生産:
 - ▶ ウラン、プルトニウムの核分裂
 - 重水素、三重水素の核融合(将来技術)
- ▶ 核燃料製造:
 - ウラン-238の中性子捕獲によるプルトニウム-239の製造 (²³⁸U(n,γ)²³⁹U →²³⁹Np →²³⁹Pu)
- ◆ 工業分野:
 - ▶ 半導体製造におけるSi中へのP(リン)ドーピング³⁰Si(n, γ)³¹Si→³¹P
- 医療分野:
 - ポジトロン断層撮影 (PET): 体内に投与した陽電子(ポジトロン)放出核種を利用したガン診断方法。¹⁸O(p, n)¹⁸F (半減期110分)で生成した¹⁸Fがよく用いられる。
 - 単一光子放射断層撮影(SPECT):体内に投与したガンマ線放出核種を利用した ガン診断方法。^{99m}Tc(半減期6時間)がよく用いられる。^{99m}Tcの親核種である⁹⁹Mo の製造(⁹⁸Mo(n,γ)、¹⁰⁰Mo(n,2n)、¹⁰⁰Mo(p,2n)^{99m}Tc又は¹⁰⁰Mo(p,pn)⁹⁹Mo)
 - ▶ ホウ素中性子捕獲療法(BNCT):ガン細胞に集まりやすいホウ素化合物の性質を 利用して、中性子照射で¹⁰B(n, α)反応を局所的に起こす方法 長寿命放射性廃棄物の低減:
 - ▶ 以下、詳述

核分裂

- □ 主に<u>ウラン235(²³⁵U)</u>の核分裂反応
- □ 1個のウラン原子が、2個の<u>核分裂生成物</u>(Fission Product: FP)に変化
- □ 原子核の結合エネルギーの一部が解放されて<u>熱エネルギー</u>に変化
- □ 余った<u>2~3個の中性子</u>を放出
- □ 中性子が次のウランに当たって、核分裂を起こす → 連鎖反応
- □ この間、約0.1マイクロ秒(高速中性子炉)から0.1ミリ秒(熱中性子炉)

Japan Atomic Energy Agency ((JAEA

中性子捕獲反応

□ <u>ウラン235(²³⁵U):</u>天然では0.7%の同位体比 原子炉では3~5%程度に濃縮

□ <u>ウラン238(²³⁸U):</u>天然では99.3%の同位対比

ウラン同位体

²³⁵U(T_{1/2}:7.04億年): 99.27437 ²³⁵U(T_{1/2}:7.04億年): 0.72% ²³⁴U(T_{1/2}:24.6万年): 0.0055%

核分裂によって発生する2個の核分裂生成物の質量数分布は非対称 質量数90~100と130~140くらいにピーク

U-235の核分裂で生成される核分裂生成物の質量数分布

核分裂生成物(FP)とマイナーアクチノイド(MA)

族	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	盐
周期	(1A)	(2A)	(<u>3</u> B)	(4B)	(5B)	(6B)	(7B)		(8)		(<u>1</u> B)	(2B)	(3A)	(4A)	(5A)	(6A)	(7A)	(0)	構造
1	1日 ● 水素 1.008																2He ● ヘリウム 4.003	K殻	
2	3Li リチウム (6.941)	4Be ペリリウム 9.012			仪	/ 发生风初				原子番号 元素名 原子量 [■]	· ——		5日 ホウ素 10.81	6C 炭素 12.01	7N ● 窒素 14.01	8〇 ● 酸素 16.00	9F ● フッ素 19.00	10Ne ● ネオン 20.18	L殻
3	11Na ナトリウム 22.99	12Mg マグネシウム 2431							- 1993年 国際原ナ重 []内の数値は最も安定な 同位体の質量数を示す。				13Al アルミニウム 26.98	14Si ケイ素 28.09	15円 リン 30.97	16S 硫黄 32.07	1 7 CI● 塩素 35.45	18Ar ● アルゴン 39.95	M殻
4	19K カリウム 39.10	20Ca カルシウム 40.08	21SC スカンジウム 44.96	22Ti チタン 4787	23V バナジウム 50.94	24Cr クロム 52.00	25Mn マンガン 54.94	26Fe 鉄 55.85	27Co ⊐パルト 58.93	28Ni ニッケル 58.69	29Cu 歸 63.55	30乙n 亜鉛 6539	31Ga ガリウム 69.72	32Ge ゲルマニウム 72.61	33AS 上素 74.92	34Se セレン 78.96	35 Br ★ 臭素 79.90	36Kr ● クリプトン 83.80	N殻
5	37Rb ルビジウム 85.47	38Sr ストロン チウム 87.52	39Y イットリウム 88.91	40Zr ジルコニウム 91.22	41Nb ニオブ 92.91	42Mo モリブデン 95.94	43 TC テクネチウム [99]	44Ru ルテニウム 101.1	45Rh ロジウム 102.9	46Pd バラジウム 106.4	47Ag 銀 107.9	480d カドミウム 112.4	49ln インジウム 1148	50Sn スズ 118.7	51Sb アンチモン 1218	52Te テルル 127.6	53 ヨウ素 126.9	54Xe ● キセノン 131.3	D殻
6	550s セシウム 132.9	56Ba パリウム 1373	57~71 ランタノイド *	72Hf ハフニウム 178.5	73 Ta タンタル 180.9	74W タングステン 183.8	75Re レニウム 186.2	760s オスミウム 190.2	77lr イリジウム 192.2	78 Pt 白金 195.1	79Au 金 197.0	80Hg ★ 水銀 200.6	81 TI タリウム 204.4	82Pb ∰ 207.2	83Bi ビスマス 2090	84Po ポロニウム [210]	85At アスタチン [210]	86Rn ● ラドン [222]	P殻
7	87Fr フランシウム [223]	88Ra ラジウム [226]	$\begin{array}{c} 89 \neq 103 \\ 7 \neq 7 \neq 7 \neq 7 \\ * * \\ \hline 1261 \\ 1262 \\ \hline 1261 \\ \hline 1262 \\ \hline 1262 \\ \hline 1262 \\ \hline 105 Db \\ 87 \pm 7 \pm 7 \\ 1263 \\ \hline 105 Bc \\ 9 \pm \pi - 47 \\ 108 Hs \\ 109 Ht \\ 108 Hs \\ 109 Mt \\ 74 \pm 30 \\ \hline 108 Hs \\ 109 Mt \\ 74 \pm 30 \\ \hline 1268 \\ \hline 108 Hs \\ 109 Mt \\ \hline 108 Hs \\ \hline$																
族の 一般名	アル力ノ金属	アルカリ 土類金属	新土類元素													カルコゲン 元素	ハロゲン 元素	不活性ガス]
価電数	1	2											3	4	5	6	7	0	1
酸化数	+ 1	+2												-1	0	1			
	陽イオン、	塩基性		1	亥燃	料 「			 7 1	「ナー	・アク	チノ	15			•	陰イオン、	酸性	
*	ランタノイド	57La ランタン 138.9	58Ce セリウム 140.1	59Pr プラセオジム 140.9	6₀Nd ネオジム 144.2	61Pm プロメチウム [145]	62Sm #7754 150.4	63Eu ユウロビウム 1520	64Gd ガドリニウム 1573	65 Tb テルビウム 158.9	66Dy ジスプロ シウム	67Ho ホルミウム 164.9	68Er エルビウム 1673	69Tm ツリウム 168.9	70Yb イツテル ビウム	71Lu ルテチウム 175.0			
**	アクチノイド	89AC アクチニウム [227]	90Th トリウム 2320	91Pa プロトアク チニウム 231.0	92U ウラン 238.D	93Np ネブツニウム [237]	94Pu ブルトニウム [239]	95Am アメリシウム [243]	96Cm キュリウム [247]	97Bk パークリウム [247]	98 Cf カリホル ニウム [25 2]	99Es アインス タイニウム [252]	100Fm フェルミウム [257]	101 Md メンデレ ビウム [258]	102No ノーペリウム [259]	103Lr ローレン シウム [262]			
	非	金属元素、	他は金属	元素			軽金属	経金属 「「「「「」」「「」」「「」」「「」」「「」」「「」」「」」「「」」「」」「」						無印 常温、常圧で固体					
	遷	移金属(B)、	他は典型	2元素(A)			重金属	倉金属 金属元素 = 重金属 + 軽金属 ★ 常温、常圧で液体											
A los							力州大	受講義	2015	王9日24	1-25日								c

原子炉(軽水炉)内でのウラン燃料の転換

Japan Atomic Energy Agency (JAEA)

マイナーアクチノイド核変換専用システム

〇高速中性子による核分裂反応を利用。 〇可能な限りMAの濃度を高めて、変換効率を向上させる。 〇多様な燃料組成に対する適応性を高くする。

▲ MAを主成分とし、²³⁸Uを含まないため、高速炉の出力上昇を抑制 する負のフィードバックで重要な<mark>ドップラー効果</mark>が効きにくい。

▲ 炉の安定かつ安全な運転に重要な実効遅発中性子割合が小さい。

臨界状態とする通常の原子炉では、運転制御・安全性確保に問題を 生じる恐れ有り。

未臨界で運転する加速器駆動未臨界システム(Accelerator Driven System: ADS)が有力視。

なぜADSが必要か?

■ ADS導入の動機:

- □ MA核変換: ADSは遅発中性子やドップラー効果の影響が小さいため、 MAを大量に装荷できる
- □ エネルギー生産: ADSは加速器を止めれば直ちに停止するため、現行 軽水炉よりも安全性に優れる可能性がある
- □ トリウム利用: ADSならトリウム未臨界体系からスタートできるため、ウラン資源を 必要とせずに原子力利用を始められる
- ◆ 上記の組み合わせも可能

高速中性子増倍体系で、MAの核分裂連鎖反応で効率良く核変換

例えば、六ヶ所工場(800t/y)で生まれるMA(1~1.5t/y)を核変換するには、
 3~5GWth程度の総出力規模のADSが必要 → 800MWth × 4~6基

加速器駆動未臨界システム(ADS)

Japan Atomic Energy Agency

12

AEA

ADSの構成

ADSの構成要素と条件

・冷却材の選定

高速中性子体系 → Na, He, Pb, Pb-Bi

→ 第1候補は核破砕ターゲットと同じPb-Bi

Pb-Bi: 〇温度が上昇したときのボイドによる正の反応度が小さい。 〇中性子吸収が小さい。

▲重い ▲Po-210(半減期138dの *α* 核種)を生成

▲材料共存性に難

◎ロシアの原子力潜水艦での経験豊富

・未臨界度の設定

- → 万が一の場合でも臨界にならない→臨界より遠い方が良い。
- → 臨界に近い方が加速器が小さくて済む。
- → 燃焼による反応度の変化が小さい方が加速器の出力に余裕 を持たなくて寄り小さくて済む。
- 今後の定量的な評価が必要。

提案されている核変換システムの例

ADSの特性

Japan Atomic Energy Agency (

ADSの年間MA処理量

$$M_{ma} = (I/e) *N_{s} \cdot \eta *y*(1/(1-k_{eff})*(k_{eff}/\nu)*(A/N))$$

e (素電荷) = 1.6*10⁻¹⁹クーロン A (MAの質量数) = 約240 N(アボガドロ数) = 6*10²³ y(1年間) = 3.15*10⁷秒

I(電流) = 約10-20mA
N_s(1陽子あたりの核破砕中性子放出量) =約30@1.5GeV
$$k_{eff}$$
(中性子増倍率) = 約0.97
 ν (核分裂による平均放出中性子数) = 2.9
 η (陽子加速器の年間稼働率) = 80%

ADSの特性

Japan Atomic Energy Agency ((JAEA

ADSの加速器条件

- ・強力な中性子源には、高エネルギー陽子(300MeV以上)による 核破砕反応が最適
 - 加速器に求められる条件 : 大強度、高効率、安定、低コスト 軽水炉10基分のMAを核変換できる800MWthのADSを k=0.97で運転するには、加速器出力は20MW以上必要。

→ 大電流陽子を高効率で加速 : 超伝導リニアック

・最適な陽子エネルギーの選定:

-投入エネルギーに対する発生中性子の数 → <u>1~1.5GeVが最適</u> -実際に、1.5GeV × 13mAか600MeV × 33mAのどちらを選ぶかは、大 電流化の困難さ、エネルギーアップによるコスト上昇、ビーム窓の電流 密度とビーム径などで総合的に判断する。

ADSの運転サイクルと未臨界度

k_{eff}: 0.97 – 0.94 Maximum beam : 1.5 GeV x 18 mA = 27 MW
 In this study, 30MW is adopted, though 20MW will be sufficient in the equilibrium cycle.

Japan Atomic Energy Agency ((JAEA)

タンク型鉛ビスマス冷却ADSの概略仕様

- ・陽子ビーム: 1.5GeV
- 核破砕ターゲット: Pb-Bi
- ・冷却材:Pb-Bi
- ・最大 k_{eff} = 0.97
- <mark>・熱出力</mark>: 800MWt
- ・MA初期装荷量 : 2.5t
- ・燃料組成:

(MA +Pu)N + ZrN 内側炉心: Pu/HM=30.0% 外側炉心: Pu/HM=48.5%

・核変換効率:

10%MA / 年

・燃料交換法:600EFPD,1バッチ

ADS研究の現状

 1.5GeV・30MWの 陽子で 15.7MWの熱が発生
 ビーム窓と炉心ホットスホットの 良好な冷却が目標

■仕切壁でダクトレス集合体から ターゲット領域への流入を阻止

■流調ノスルで高温になるビーム窓 先端を効果的に冷却

■設計パラメータの最適化:

> 炉心入り口温度:300 ℃
> ビームダクト径:45cm

Japan Atomic Energy Agency

Japan Atomic Energy Agency

核変換実験施設 (TEF)の概念 核変換物理実験施設:TEF-P ADSターゲット試験施設:TEF-T 目的: 低出力で未臨界炉心の物理的特性 目的: 大強度陽子ビームでの核破砕 の探索とADSの運転制御経験を蓄積 ターゲットの技術開発及び材料の 施設区分 : 原子炉(臨界実験施設) 研究開発 陽子ビーム: 400MeV-10W 施設区分 : 放射線発牛装置 熱出力 : 500W以下 陽子ビーム: 400MeV-250kW ターゲット: 鉛・ビスマス合金 臨界集合体 多目的照射エリア レーザー光源 核破砕ターゲット 10W 陽子ビーム

Japan Atomic Energy Agency ((JA

Japan Atomic Energy Agency

MA装荷可能な臨界実験装置(2/2)

分離変換技術に対する文部科学省における評価

平成25年7月:原子力科学技術委員会に、群分離・核変換技術評価作業部会 を設置

平成25年10月:中間取りまとめ案を公表

評価作業部会の目的

これまで<u>実験室レベルにとどまっていた群分離技術及び加速器駆動核変換</u> システム(ADS)を用いた核変換技術について、(中略)研究開発の進捗状況や、 工学規模での研究開発を可能とする出力規模の高い核変換実験施設の 整備の必要性や有効性、整備計画の妥当性等を中心に検討。

<u>文科省/分離·核変換技術評価作業部会</u>

Japan Atomic Energy Agency

H25年度の分離変換技術に対する評価

研究開発の課題と今後の取組に関する評価

- おう離、ADS、燃料サイクル及び燃料の各分野について技術成熟度の検討を行った結果、概ね、概念開発段階から原理実証段階に移行することが可能な研究開発段階にあり、工学規模の次のステージに移行することが適当である。
- ▶ J-PARCの核変換実験施設については、次のステージに向けて進むことが 適当と考えるが、今後、施設整備計画の策定に当たっては、(中略) 段階に応じて進捗状況をチェックすることが必要。

<u>文科省/分離·核変換技術評価作業部会</u>

Japan Atomic Energy Agency ((JAI

作業部会H26年度の見解

「核変換実験施設の技術課題進捗に係る見解について」

- ▶核変換実験施設の課題への取組状況は概ね順調であると判断する。
- ▶また,技術開発に関するロードマップにより技術開発の進捗管理が適切に行われている。
- ▶よって、引き続き、課題達成に向けた要素技術の研究開発に取り組むとともに、施設の建設に向けた検討に必要な地盤調査や施設の安全設計のための検討等に取り組むことは妥当である。
- ▶(中略)本作業部会としては、これらの進捗状況について、必要に応じて報告を受けるとともに、技術評価について、引き続き、調査、検討を行っていく。

エネルギー基本計画(平成26年4月)

第3章、第4節、4. (1)使用済燃料問題の解決に向けた取組の抜本強化と総合的な推進 ③放射性廃棄物の減容化・有害度低減のための技術開発

- ▶(中略)リスク低減のため、その減容化・有害度低減が重要であること等を 十分に考慮して対応を進める必要がある。
- ▶こうした課題に的確に対応し、その安全性、信頼性、効率性等を高める技術を 開発することは、将来、使用済燃料の対策の柱の一つとなり得る可能性が あり、その推進は、幅広い選択肢を確保する観点から、重要な意義を有する。
 ▶ このため、放射性廃棄物を適切に処理・処分し、その減容化・有害度低減の ための技術開発を推進する。
- ▶具体的には、高速炉や、加速器を用いた核種変換など、放射性廃棄物中に 長期に残留する放射線量を少なくし、放射性廃棄物の処理・処分の安全性を 高める技術等の開発を国際的なネットワークを活用しつつ推進する。(後略)

文科省/分離·核変換技術評価作業部会

Japan Atomic Energy Agency ((JA)

分離変換研究開発ロードマッフ

Applications

MYRRHA計画(ベルギー)の概要

欧州を中心とした国際協力による加速器駆動多目的研究炉計画

□ 目的 ▶ 核廃棄物の核変換技術の開発 ▶ 先進的な原子炉(特に鉛冷却炉)の開発 ▶ 核分裂炉及び核融合炉のための高速中性子照射施設 ▶ 加速器に基づく科学コミュニティーへの貢献 ➢ Si照射やRI製造のための中性子照射施設 □ 仕様 ・照射炉BR2の後継として、 加速器:超伝導LINAC 陽子ビーム: 600 MeV – 4 mA 2016年頃の着工を目指 ٠ 核破砕ターゲット・冷却材: Pb-Bi している 最大 k_{eff} = 0.9552(ks=0.96) 2006年11月に原子力機 熱出力:~100MWth ٠ 構と協力取り決め締結 燃料組成:MOX(富化度30wt%) 〇臨界での運転も可能な概念に変更中 2010年から原子力機構 ○窓なし型ターゲット概念を追求してい は欧州の「中央設計チー たが、最近、窓あり概念に変更 ム(CDT)」に参加 □2010年3月 ベルギー政府がサポートを表明 MYRRHA: Multipurpose hYbrid ▶ 建設費<u>960Mユーロのうち40%を負担</u> Research Reactor for High-tech

