# Intranuclear cascade model for cluster production reaction

Yusuke UOZUMI Faculty of Engineering, Kyushu University Intranuclear cascade (INC) model

Spallation reactions at intermediate-energies DDX of (p,p'x), (p,nx), , , nucleon spectra from nucleon-induced reactions reasonable prediction in a wide energy range

Particle transport simulation; PHITS, Geant4, ...

Intensive developments of simulation tools require predictive power in cluster productions.

INC advantage = high flexibility  $\neq$  exact theory Extension toward any direction

physics modeling:

reasonable, appropriate, consistent, , , → generalization; target, energy, cluster Deep understanding of the process is essential.

Physics model in INC :

succession of binary hard collisions

Repulsive interaction

No attractive interaction

Cluster formation is not included.

Do we add an attractive interaction?

1<sup>st</sup> question





Soft collision = shallow part of potential potential scattering ; elastic, inelastic direct reaction wave function

wave like picture

Clustering; Which picture, particle or wave ?

 $n + p \rightarrow d + \gamma$ 

No chance for classical particles to be bound at positive energies.

attractive force is not essential

Wave?  
$$i\hbar \frac{\partial}{\partial t}\psi(x,t) = \left(\hat{T} + V(x,t)\right)\psi(x,t)$$
  
 $\psi(x_i, x_j, t) = \phi_i(x_i, t)\phi_j(x_j, t)$ 

# Time development of Gaussian wave packets





Cluster (correlation) = particle + wave MC = Introduce probability to form a cluster Probability should be determined to fit exp.



Which processes should be included ?

Possible processes in forming a (deuteron) cluster

(1) indirect knockout p+<d>
(2) Higher order, rescattering <d>+<N>

(3) Indirect pickup  $\Delta p \cdot \Delta x$ (4) Coalescence  $\Delta p \cdot \Delta x$  or  $\Delta E \cdot \Delta t$ ?

(5) direct (pickup, knockout) : shell state excitation (6) direct formation  $p+<N> = d + \pi \text{ or } \gamma$  Previous studies on cluster productions Many theoretical efforts exciton model or hybrid model

two directions:

- 1. knockout (preformed cluster)
- 2. coalescence or pickup





#### coalescence / pickup

Lower energy, more chance to find a partner. Responsible for low energy cluster production  $\Delta p \cdot \Delta x < C$ 



Why opposite pictures in exciton model studies?

Low beam energies below 100 MeV might cause this ambiguity.

higher beam energy 1 GeV?, less ambiguity.

pickup : lower energy part

Phase space limits high energy cluster **knockout** : higher energy part of spectra preformed cluster  $\approx$  elementary particle

Both processes should be responsible.

Another ambiguity : knockout

The exciton model does not involve angular momentum.

forward-peaked angular distributions in experimental data impossible in classical cluster-knockout picture. N+<cluster> scattering cross section, Pauli blocking (p,dx) reaction has been open question

- very weak binding of a deuteron
- probability to find a deuteron in a nucleus
- real d or virtual ? Pauli principle
- Nd scattering cross section, angular distribution, unknown
- disintegration probability after Nd scattering

(p,dx) spectrum

quasi-free like bump at forward angle.

real d + N scattering is not a forward peak distribution

Strongly correlated pn pair

iso-spin forbidden transition in (e,e'd) reaction is explained in terms of the deuteron integration

# Cluster knockout





#### d =

Elementary particle Non-purterbative d = composite particle purterbative

Forward peak ← exchange term NN cross section Pauli blocking

# QMD and AMD

Molecular dynamics : attractive force
 Coalescence like

relative momenta to CM should be small



Particle picture = phase space  $\Delta p \cdot \Delta x$ 

High-energy cluster formation = wave picture Direct reaction = soft collision wave function plays a role Not classical picture Cluster formation requires binding at positive energy

## initial state

# gr.st. cluster the higher order in single particle states (1) indirect knockout p+<d>

(2) Higher order, rescattering <d>+<N>

$$Gr \rangle = c_1 | (s.p.)_A \rangle$$
  
+  $c_2 | (s.p.)_{A-2} (d)_2 \rangle$   
+  $c_3 | (s.p.)_{A-4} (\alpha)_4$ 

final state

#### only knockout



V(p,d) 392 MeV

#### C(p,d) 392 MeV

only knockout

Lower energy: indirect pickup, coalescence, evaporation

Highest energy :  $\begin{cases}
p + \langle n \rangle = d \\
p + \langle N \rangle = d + pi \\
direct pickup
\end{cases}$ 

 $Co(p, \alpha)$  at 200 MeV only knockout





#### $Co(p, \alpha)$ at 200 MeV pickup



#### $Co(p, \alpha)$ at 160 MeV pickup



#### V(p, d) at 392 MeV

#### pickup (green), and knockout (red)



Pickup; Underestimate high-energy part

#### Sum of pickup and knockout

#### V(p, d) at 392 MeV pickup + knockout



#### Al(p, d) at 300 MeV pickup + knockout



#### Au(p, d) at 392 MeV pickup + knockout



#### Co(p, 3He) at 160 MeV pickup + knockout

![](_page_24_Figure_1.jpeg)

#### Co(p, 3He) at 200 MeV pickup + knockout

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

# (p,d) at 670 MeV, 16deg

### Only elastic NN scattering

Inelastic influences KO need more KO

## pickup ; No high-energy

![](_page_26_Figure_5.jpeg)

# Summary

INC light cluster production (p,d), (p,3He), (p, α) pickup and knockout

Case 1; More pickup

Overall good accounts for (p,d), (p,3He), (p, α) underestimation: 392-MeV (p,d) 20deg 670-MeV (p,d) 16 deg

Case 2; only knockout

Overall good accounts for (p,d),  $(p, \alpha)$ 670-MeV (p,d) 16 deg ???

 $\leq$  400 MeV good

 $\geq$  600 MeV  $\Delta$ ,  $\pi$ , knockout/pickup