Present Status of JENDL-4

Keiichi SHIBATA Nuclear Data Center Japan Atomic Energy Agency

Contents

- Purpose of JENDL-4
- Code development for JENDL-4
- Evaluation work for FP nuclei
 - JNDC FP Nuclear Data Evaluation WG
- Evaluation work for light and medium nuclei
- Time schedule
- Issues probably carried over after JENDL-4

Purposes of JENDL-4

- Ad Hoc Committee on Next JENDL under JNDC
 - Interviews with specialists in various fields
 - LWR, FBR, Shielding, ADS, Fusion, Criticality Safety, Radiation Damage, Medical Use, Astrophysics *etc.*

Reported by the Committee in May, 2003

- Development of innovative reactors
- High burn-up and use of MOX fuel for LWR
- Criticality safety with burn-up credit
- Medical use, Astrophysics

A library with high quality and reasonable quantity JENDL-4

Key Subjects for JENDL-4

- To resolve open problems with JENDL-3.3
- Improvements of FP and MA data
- Covariances
- Gamma-ray production data
- FP yields
- Various benchmarks
- Quality assurance
- Reactor constants

Nuclear Model Code Development

- POD coded (Fortran) by A. Ichihara
 - Optical model, DWBA, exciton model, statistical model for evaluation of FP
 - A report was published, but the code is still under development
- CCONE coded (C++) by O. Iwamoto
 - Coupled-channel optical model, DWBA, exciton model, statistical model for evaluation of actinides
 - The code is still under development.

Example of POD Results

Example of CCONE Results

Nuclear Data Center

Evaluation of FP Data

- 213 nuclei to be evaluated JENDL-3.3: 185 nuclei
 - newly evaluated: 28 nuclei

T_{1/2} \ge 10 days, fission yield \ge 0.1%

• Low energy region ($E_n = 10^{-5} \text{ eV} - 100 \text{ keV}$)

Resolved resonance parameters

- High energy region (E_n = 10 keV 20 MeV)
 - Optical model, direct-reaction model, pre-equilibrium model, statistical model

Priorities for FP Evaluation

- Needs from LWR, FBR, ADS
- Availability of new differential measurements
- Comparison of JENDL-3.3 total and capture cross sections with experimental data
- Benchmark results of JENDL-3.3 on STEK experiments
- Results of data selection by WPEC SG21

Priority-A 63 nuclei

Resolved Resonance Parameters for FP Nuclei

- Comparison of RRP obtained from exp.
- Determination of L and J
- Check on calculated thermal cross sections and resonance integrals with Mughabghab 06
- Comparison of energy-averaged cross sections
- 107 nuclei updated; 51 nuclei unchanged from JENDL-3.3; 13 new evaluation; 42 no RRP

- Gunsing+ ('00)
 - Same as JENDL-3.3
- Thermal capture
 - Adjust negative res.
 - Harada+ ('95 revised)
 - Molnar+ ('02)
 - Furutaka+ ('04)
 Average 23.6±0.7 b
 JENDL-3.3 22.76 b

- n ¹¹⁸Sn
- Wisshak+ ('96)
 - E_r, L, gΓ_n, cap. area
 - ⇒ cap. area → $Γ_γ$
 - Upper limit: 15 keV
- JENDL-3.3
 - Mughabghab 81
 - Upper limit: 4.8 keV
 - **Unknown** Γ_n
 - p-wave and reduced width of 250 meV assumed

n - ¹⁵⁷Gd

- Leinweber+ (2006)
 - Capture & trans.
 - Gd-152,154,155,156, 157,158,160
- Gd-157
 - 0.032-eV resonance
 - Thermal capture
 - 10% smaller than JENDL-3.3
 - PENDING !!

Optical Model Parameters for FP

- Global parameters needed
 - ▶ Koning-Delaroche (2003) spherical OMP → NOT applicable to deformed nuclei
- New global CC parameters applicable to a wide mass range up to 200 MeV
 - Can be used for deformed nuclei such as Sm

Low Energy Property of OMP Newly Obtained

S-Wave Neutron Strength Function

Evaluation of FP in the Non-Resonance Energy Region

Finished

- Zn, Ag, Sn, Nd, Pm, Tb, Dy
- In progress
 - Mo, Nb, Pd, Sm

Zn Cross Sections (I)

Zn Cross Sections (2)

Zn Cross Sections (3)

Zn Cross Sections (4)

Nd Cross Sections (1)

Nd Cross Sections (2)

Sn Cross Sections (I)

Nuclear Data Center

Sn Cross Sections (2)

Nuclear Data Center

Sn Cross Sections (3)

Sn Cross Sections (4)

Sn-126: LLFP $T_{1/2} = 2.3 \times 10^5$ year

Sn Cross Sections (5)

Evaluation of Light and Medium Nuclei

Finished

- **Si-28**, 29, 30
- Ca-40, 42, 43, 44, 46, 48
- On-going
 - Au-197
- To be re-examined
 - H-1, O-16
 - Cr, Fe, Ni

Si Cross Sections (I)

Si Cross Sections (2)

Si Cross Sections (3)

Cross Section (b)

Ca Cross Sections (I)

Nuclear Data Center (JA

Ca Cross Sections (2)

Nuclear Data Center

Ca Cross Sections (3)

Nuclear Data Center

Time Schedule of JENDL-4

Time Schedule of JENDL-4

Nuclear Data Center ((JAEA

Issues Probably Carried Over after JENDL-4

- Thermal Scattering Law Data
 - Difficult to find a specialist over the world
- Resonance Analysis
 - Important, but raw data and expertise needed!
- Processing Code (NJOY etc.)
 - Necessary to keep specialists
- (Nuclear Model Codes Made in Japan)
 - Resolved by JAEA activities

