2007 Symposium on Nuclear Data, Nov. 29-30, 2007, RICOTTI Convention Center, Tokai, Ibaraki, Japan

Integral Test for JENDL-4

Benchmark Results with Preliminary Version of JENDL Actinoid File

29 Nov. 2007

1

Keisuke OKUMURA, Go CHIBA

(okumura.keisuke@jaea.go.jp, chiba.go@jaea.go.jp)

Reactor Physics Group Nuclear Science and Engineering Directorate Japan Atomic Energy Agency (JAEA)

- The JENDL Actinoid File (JENDL/AC) is under developing at JAEA.
- Most of the evaluations in JENDL/AC will be taken over to a part of the next general purpose file JENDL-4.

Benchmark calculation for various type of reactors to confirm present performances of JENDL/AC and to polish it more and more.

Good performance superior to recent other nuclear data files : JENDL-3.3, JEFF-3.1, ENDF/B=VII.0, etc.

Framework of JENDL/AC Benchmark Test

Criticality Benchmark with Former Nuclear Data Files

Proc. of the 2002 Symposium on Nuclear Data, Tokai, Japan, Nov. 21-22, JAERI-Conf 2003-006, pp15-21, (2003).

Benchmark Materials

Handbook (Sep. 2007 Edition) of International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook (Mar. 2007 Edition) of International Reactor Physics Experiment Evaluation Project (IRPhEP)

Benchmark Calculation

- Continuous-Energy Monte Carlo calculation (MVP)
- Detailed geometrical model specified in the benchmark handbooks

Neutron histories : 20 ~ 60 million \rightarrow 1 σ error of keff < 0.0002

- Multi-group deterministic calculation for small reactivity analysis or sensitivity study with the codes:
 - SLAROM-UF
 - SN solvers in the CBG system

Classification of Benchmark Problems in ICSBEP Handbook

Fissile Materials

HEU: Highly Enriched Uranium Systems (60%~)

IEU: Intermediate and Mixed Enrichment Uranium Systems (10~60%)

LEU: Low Enriched Uranium Systems (~10%)

MIX: Mixed Plutonium-Uranium Systems

(e.g. MOX fuel)

U233: Uranium-233 Systems

PU: Plutonium Systems

SPEC: Special Isotope Systems

Fuel Forms

SOL: Solution

COMP: Compound

(e.g. UO₂,MOX,UF₄)

MET: Metal

MISC : Miscellaneous (e.g. UO2 rods in fuel solution)

Neutron Spectra

FAST: Fast INTER: Intermediate THERM: Thermal MIXED: Mixed e.g. Multi-region system with different neutron spectra

Example of case index for TCA-UO2 cores

LEU-COMP-THERM-006 (LCT6.1 ~ LCT6.18) Different critical configurations lattice pitch, critical water height, -018 horizontal lattice size (NxN), etc.

Selected Benchmark Problems

Fuel	Form	Spectra	ICSBEP2006	MVP Cal.
HEU	SOL	INTER	3	2
		THERM	463	50
	СОМР	FAST	8	0
		INTER	14	5
		THERM	216	21
		MIXED	45	0
	MET	FAST	304	41
		INTER	14	9
		THERM	127	3
		MIXED	32	8
	MISC	THERM	7	0
IEU	SOL	THERM	5	0
	СОМР	FAST	2	1
		INTER	14	2
		THERM	41	1
		MIXED	3	0
	MET	FAST	20	11
LEU	SOL	THERM	104	77
	COMP	THERM	1066	194
	MET	THERM	65	13
	MISC	THERM	11	0

We have about 1000 results with MVP and JENDL-3.3

MIX	SOL	THERM	72	9
	СОМР	FAST	1	0
		INTER	3	0
		THERM	255	63
		MIXED	17	0
	MET	FAST	45	9
		INTER	2	0
		MIXED	1	0
	MISC	FAST	8	0
		THERM	56	53
		MIXED	8	0
	COMP	THERM	5	0
	SOL	INTER	29	29
11222		THERM	192	44
0233		MIXED	8	3
	МЕТ	FAST	10	10
		THERM	1	0
	SOL	THERM	529	208
	СОМР	FAST	6	0
		INTER	1	0
		THERM	21	0
PU		MIXED	7	0
	MET	FAST	87	37
		INTER	4	4
		THERM	2	2
		MIXED	1	1
SPEC	MET	FAST	20	20
Total			3955	930

E
le
ok
pr
¥
ar
E
Сh
ЭЛ С
ğ
of
X
de
Ľ.
Ð
as
()

Calculated keff and errors

Core parameters (for trend analysis)

JENDL-3.3 Results for LEU/HEU-SOL

Criticality of U235 Solution Fueled System (LST & HST)

H/Fissile HM

Criticality of Low Enriched U235 Fueled System (LCT)

U-235 enrichment (wt.%)

Criticality of Enriched U235 Fueled System (KUCA)

U-235 enrichment (wt.%)

Effect of Thermal Capture Cross Section of U238

Proc. of the 2004 Symposium on Nuclear Data, Nov. 11-12, 2004, JAERI, Tokai, Japan, pp.56-63, JAERI-Conf 2005-003, (2005).

Light Water Moderated MOX Fueled System

PU-SOL-THERM System (J33)

H/Fissile HM

PU-SOL-THERM System (Different Nuclear Data)

H/Fissile HM

Small Reactor Benchmark

Criticality of Uranium Fueled Fast Reactors (BFS-2)

Na Void Reactivity of U Fueled Fast Reactor (BFS-62-3A)

Voided Zone Name

Criticality of MOX Fueled Fast Reactors

SPEC-MET-FAST Benchmark (Cm244, Pu238)

Pu alloy Sample(Cm,Pu,U

SPEC-MET-FAST Benchmark (Pu242, Np237)

kg 239Pu Plate

PIE Analysis by MVP-BURN for PWR Spent Fuel

PIE Analysis by MVP-BURN for PWR Spent Fuel

Isomeric Ratio of Am241 Capture

Capture Reaction Rate of Am241 in Typical LWR

One-group Isomeric Ratio of Am241(n,γ)

J33	B68	B70	F31	JA070925
0.877	0.885	0.898	0.873	0.899

Sensitivity on Isomeric Ratio of Am241 Capture

Good performance of JENDL/AC for various types of reactors was confirmed by comparison with the results of other recent nuclear data files, JENDL-3.3, JEFF-3.1, and ENDF/B-VII.0.

However, further investigation is recommended for:

- Criticality of PU-SOL-THERM system,
- Criticality of U233-SOL-INTER system,
- ➢ Generation of Cm-242 and Cm-243 in the LWR spent fuel.

PC Cluster of Reactor Physics Group

Altix3700Bx2/2048CPU

