# Neutron cross section measurement of MA

# Hideo Harada

Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency

2007 Symposium on Nuclear Data Nov. 30, 2007, RICOTTI Convention Center

# **Neutron cross section measurement of MA**

- 1 Activities in the World
- 2 Activities in Japan for thermal neutrons
- 3 Activities in Japan for keV neutrons
- 4 Possibilities in Japan for MeV neutrons
- **(5)** Summary: Toward improvement in the MA data

# 1 Activities in the World



# (1) Activities in the World

IRMM (EU) Van de Graff, Electron L. A.: Fission, Capture, Total, (n,2n) TOF: Ge,  $C_6D_6$ 

n-TOF (CERN, EU)

TOF:  $4\pi$  BaF<sub>2</sub>, C<sub>6</sub>D<sub>6</sub>

Karlsruhe (Germany)

keV neutron capture (FP) Activation @ keV neutrons TOF:  $4\pi$  BaF,

ILL (CEA, France)

**High flux reactor** activation @ thermal neutrons

Pulse height weighting technique: C<sub>6</sub>D<sub>6</sub>, Nal etc low neutron sensitivity

TOF methodTotal absorption detector: 4 π Nal, BGO, BaF2 etc<br/>high efficiencyGamma-spectroscopic method: Ge<br/>bich energy resolution

high energy resolution

# Activities in the World

#### IRMM (EU) Gamma-spectroscopic method: Ge





. Resonance spin assignments based on secondary gamma rays using the low-lying level population method

FIG. 5. Two examples of a fit of the capture gamma-ray spectrum in the 515-575 keV region for the *p*-wave resonances at 10.24 eV and at 89.24 eV having different spin.

**Activities in Japan** 

**Tohoku: Fission JAEA:** Capture, Decay heat Kyoto: Capture & Fission

TIT: Capture,  $\gamma$ -spectra



#### 2002 2003 2004 2005 2006

Fundamental R&D on Neutron Cross Sections for **Innovative Reactors Using** Advanced Radiation Measurement Technology

Project Leader: M. Igashira (T.I.T.)



 $4\pi$  Ge spectrometer

6



- 2 Activities in Japan for thermal neutrons
- No.1 When there are resonance peaks below 0.5 eV, can we measure  $\sigma_0$  and resonance integral correctly ?





| Reaction                                   | Present                       | JENDL-3                | ENDF/B-<br>VII | Mughabghab<br>Atlas 5 <sup>th</sup> ed.                            |
|--------------------------------------------|-------------------------------|------------------------|----------------|--------------------------------------------------------------------|
| <sup>237</sup> Np(n, γ) <sup>238</sup> Np  | $\sigma_0$ =169 $\pm$ 4 b     | 161.7 b                | 162.2 b        | 175.9±2.9 b                                                        |
| <sup>243</sup> Am(n, γ) <sup>244</sup> Am  | σ =174.5±5.3 b                | (150 ь)                |                | (150 ь)                                                            |
| <sup>241</sup> Am(n, γ) <sup>242g</sup> Am | $\sigma_{0g}$ =628 $\pm$ 22 b | σ <sub>0</sub> 639.4 b | 620.84 b       | $\sigma_{0g} 533 \pm 13 \text{ b} \ \sigma_0 587 \pm 12 \text{ b}$ |

 References:
 Harada et al. JNST 43 (2006) 1289.

 Ohta et al. JNST 43 (2006) 1441.

 Nakamura et al. JNST 44 (2007) Dec.



**Table 3** Result of effective cross section<sup>\*</sup> for the  ${}^{243}\text{Am}(n,\gamma){}^{244}\text{Am}$  reaction

| References                                                        |                                                    | $\sigma_0$                       | $I_0$                     | $\hat{\sigma}$ (b)                                  |
|-------------------------------------------------------------------|----------------------------------------------------|----------------------------------|---------------------------|-----------------------------------------------------|
| Present result<br>JENDL-3.3<br>Mughabghab<br>Marie <i>et al</i> . | $(2002)^{14)}$<br>$(1984)^{15)}$<br>$(2006)^{16)}$ | <br>76.7<br>75.1±1.8<br>81.8±3.6 | 1787<br>1820±70<br>(1800) | $174.5\pm 5.3$<br>$150\pm 8$<br>$150\pm 9$<br>(156) |
|                                                                   | ()                                                 |                                  | (2250)                    | (174)                                               |

\*The effective cross section with the quantity in Westcott's convention  $r\sqrt{T/T_0}=0.037\pm0.004$ .

#### Ohta et al. JNST 43 (2006) 1441.





### **Experiments for Capture**

#### **KUR Electron Linear Accelerator Facility**

Electron beam : Energy 30 MeV,Ave. Current31μARep. Rate100 Hz,Pulse Width100 ns

4 π Ge spectrometer Cluster 2 (14 Ge crystals) Clover 4 (16 Ge crystals) BGO anti-coincidence shields







Deduced capture cross section of <sup>237</sup>Np (5MBq sample)

#### Comparisons of data for keV neutrons



Energy [eV]



Activities in Japan for keV neutrons Fission

# Tohoku, Kyoto

- <sup>237</sup>Np, <sup>241</sup>Am, <sup>242m</sup>Am, <sup>243</sup>Am
- En=1- 100 keV
- Kyoto University Lead Slowing Down Spectrometer (KULS)\* driven by a 46 MeV electron linear accelerator
   \*Kobayashi et al; measurements for minor actinide, En< 20 keV</li>

### In the present study

- Back-to-back fission chamber (BTB, Ratio measurement)
   <sup>235</sup>U 99.9 %, as a standard
- For extension of energy range to high energy side,
  - Digital signal processing (DSP) technique to eliminate " $\gamma$ -flash"
  - Heavy electrical shielding of BTB, cable, PA
- Quantitative assay of samples: low geometry  $\alpha$  -counting



- Wave form analysis for each slowing down time
- Subtraction of " $\gamma$ -flash" noise from raw signal (noise + signal)

## ④ Problems in measurement for MeV neutrons

The data is very limited especially for MeV neutrons.



### 4 Possibilities in Japan for MeV neutrons



間渕幸雄、仲川 勉、林原正志

#### Activation by fast neutrons at Yayoi

# 4 Possibilities in Japan for MeV neutrons





http://www3.tokai-sc.jaea.go.jp/rphpwww/senryo/index2.htm





TOF by fast neutrons at JAEA Tokai

# 5 Toward improvement in the MA data



Several facilities covering a wide energy range are or will be soon available for the measurements of MA cross section in Japan. High flux field will contribute to deduce statistical uncertainties. Efforts to deduce the experimental uncertainties including systematic uncertainties are important. The comparisons of independent measurements will help to notice the unexpected systematic uncertainties.