Presented at Nuclear Data Symposium 2006, Tokai, Japan, January 26, 2007

Nuclear data relevant to single event upsets in semiconductor memories induced by cosmic-ray neutrons and protons - Role of nuclear data in our IT society -

Yukinobu Watanabe Department of Advanced Energy Engineering Science, Kyushu University

Table of Contents

- 1. Introduction
- 2. Model for SEU simulation and nuclear data
- 3. Results and discussion
- 4. Summary and future plans

In cooperation with Akihiro Kodama and Kouta Nishijima

Single-Event Upset (SEU)

- One of the radiation effects caused in microelectronic devices (e.g., semiconductor memory devices) used in various radiation environments
- When a memory device is exposed to radiations, **the memory state of a cell can be flipped from a 1 to a 0 or vice versa**, resulting in malfunction caused by an error in a bit.
- **"Transient" effects** caused by a single ionizing particle

Soft Error or Soft Failure

The SEUs (Soft errors) in devices and circuits have recently been recognized as a key **reliability concern** for many current and future silicon-based integrated circuit technologies.

November 13, 2000

Note that the cosmic-ray induced SEU was predicted by Ziegler@IBM and Landford@Yale Univ. (1979).

Sun Screen

THE MYSTERIOUS GLITCH has been popping up since late last year. At a new Web company in San Francisco, a telecommunications company in the Midwest, a Baby Bell in Atlanta, an Internet domain registry on the East Coast--for no apparent reason, **high-end servers made by Sun Microsystems suddenly crashed**.

.

Sun says it has finally figured out what's wrong. **It is an odd problem involving stray cosmic rays** and memory chips in the flagship Enterprise server line, whose models are priced at \$50,000 to more than \$1 million. Yet Sun won't fix all of the servers it has sold; instead it will make repairs when it deems them necessary.

http://www.forbes.com/forbes/2000/1113/6613068a_print.html

Rough estimation of SER in our daily life

1000 FIT = mean time to failure : **114 year** (= 10^{6} hr) / device

• Cell phone

4Mbit memory with **1000FIT/1Mbit** on board

1 error / 28 year

• Network equipment having SRAM with 600FIT/1Mbit on board

High-end router : 10Gbit SRAM

1 error / 170 hours

100Gbit SRAM

1 error / 17 hours

Laptop PC in airplane

 $600FIT/1Mbit \rightarrow 100,000 FIT/1Mbit@10,000 m in altitude$ 256MB (2Gbit) memories on board 1 error / 5 hours

Source : http://www.ednjapan.com/content/issue/2005/02/feature/feature02.html

Soft error rate in DRAM and SRAM

Physics related for SEU phenomena

Cosmic-ray environment on the earth

Ref.) J.F. Ziegler, "Terrestrial cosmic rays", IBM J. Res. Develop. Vol. 40, No. 1 (1996), p. 19

Radiation flux in Space

Ref.) K. Oishi, "Issues in space radiation shielding for linar base", JAERI-Conf95-016 (1995), p.125

Nuclear processes relevant to SEUs

- Production of secondary charged particles and fragments via nuclear reactions with a silicon nucleus
- Data of their energy and angular distributions are necessary.

Charge collection in a silicon junction

Flow chart of SEU simulation

Semi-empirical model

This model calculates nucleon-induced SEU cross section using experimental heavy-ion induced SEU data.

Barak et al., IEEE NS Vol. 43, No. 3, pp. 979-984 (1996). Barak, IEEE NS Vol. 47, No. 3, pp. 545-550 (2000).

$$\sigma_{SEU}(E_{in}) = N_{Si} \cdot \sigma_N(E_{in}) \int g(E_{in}, E_d, d) \sigma_{HI}(E_d) dE_d$$
$$= N_{Si} \cdot \sigma_N(E_{in}) \cdot V_{int} \cdot \int g(E_{in}, E_d, d) h(E_d) dE_d$$

The number of nuclear
reactions in ROI per unit fluxDistribution function of
the energy deposited in
the sensitive volume
(d: sensitive depth)Dependence of charge
collection efficiency on
deposited energy

Normalized Heavy-ion SEU data

$$h(E_d) = \sigma_{HI}(E_d) / \sigma_{HI}^{\infty} = 1 - \exp\left\{-\left[\frac{E_d - E_0}{W}\right]^s\right\}$$

 $E_d = d \cdot LET$

Weibull function

HI-induced SEU cross section

Monte Carlo calculation

$$\sigma_{SEU}(E_{in}) = \int \sigma_{ED}(E_{in}, E_d, SV) \cdot h(E_d) dE_d$$

$$\sigma_{ED}(E_{in}, E_d, SV) \equiv N_{Si} \cdot V_{int} \cdot \sigma_{reac}(E_{in}) \cdot g(E_{in}, E_d, d)$$

 L_{g2}

Rectangular parallelepiped geometry

Random sampling of a reaction point

 Nuclear reaction event generation (secondary ion, energy and angle) using nuclear reaction database created by QMD/GEM calculation and JENDL/HE-2004 for elastic scattering (exclusive, inclusive)

Energy deposition due to secondary ion using *dE/dx and range calculated by SRIM code*

Up to 1 GeV

Nuclear reaction database

Incident energy dependence of energy deposition spectra

- Proton incidence
- Sensitive Volume : $V = \sigma_{HI}^{\infty} \cdot d = 5.57 \times 5.57 \times 2 \mu m^3$

Experimental SEU cross sections

Ref.) K. Johansson et al., IEEE Trans. Nucl. Sci. 45, 2519 (1998).

引用) 伊部ら、応用物理Vol.70, No.11 (2001)

Comparison with experimental data (I)

Ref.) P.D. Bradley and E. Normand, IEEE NS Vol. 45, No.6 pp. 2929-2940 (1998)

Comparison with experimental data (II)

Sensitive depth = 2 μ m

Exp. ref.) P. Calvel et al., IEEE NS 43, No.6 (1996) 2827.

Discussion

- (a) Difference in **n-SEU and p-SEU**
- (b) Effect of **elastic scattering** on SEU
- (c) **Incident energy dependence of secondary ions** having significant contribution to SEU
- (d) Effect of simultaneous multiple ions emission
 - Inclusive (conventional) nuclear data vs Exclusive (event-by-event) -

(a) n-SEU and p-SEU

4Mb SRAM, **0.5** μm (HM628512ALP-7) **Sensitive depth = 2** μ **m** 10-12 SRAM 4Mb HM628512A **10**⁻¹³ 10-13 SEU bit cross-section (cm²) σ_{seu}[cm²/bit] **10**⁻¹⁴ 10-14 p-SEU (exp.) p-SEU (cal.) 10⁻¹⁵ **10**⁻¹⁵ -n-SEU (cal.) Hitachi A Neutron Peak Hitachi A Neutron Peak and Tail Hitachi A Proton 10-16 **10**⁻¹⁶ 100 200 300 400 500 0 100 200 300 400 500 0 Particle Energy (MeV) Incident energy[MeV]

Ref.) C.S. Dyer et al., IEEE NS Vol.51, No.5, 2817 (2004)

(b) Effect of elastic scattering

(c) Incident energy dependence of secondary ions having significant contribution to SEU

(d) Effect of simultaneous multiple ions emission

JQMD/GEM calculation for n + ²⁸Si reaction

Inclusive data vs Exclusive data

SEU cross sections as a function of critical energy E_c $h(E_d) = \Theta(E_d - E_c)$ $\sigma_{SEU}(E_n, E_c) = \int \sigma_{ED}(E_n, E_d, SV) \cdot h(E_d) dE_d = \int_E^{\infty} \sigma_{ED}(E_n, E_d, SV) dE_d$ $E_n = 150 \, {\rm MeV}$ (1) SV= $1.0 \times 1.0 \times 1.0 \ \mu m^3$ (2) SV=20.0 × 20.0 × 1.0 μ m³ 10⁻⁹ **10**⁻¹⁰ 10⁻¹³ σ^{SEU}(E^c) [cm²/bit] 10⁻¹¹ 10⁻¹⁴ Cal.1 Inclusive DDX data 10⁻¹⁵ 10⁻¹² Cal.2 Multiple ions emission 10⁻¹⁶ 10⁻¹³ 10⁻¹⁴ 10⁻¹⁷ 0.0 2.0 4.0 6.0 10.0 2.0 4.0 6.0 8.0 10.0 8.0 0.0 Critical Energy[MeV] Critical Energy [MeV] Q_{c} [fC] = 44.4 * E_{c} [MeV]

Energy deposition spectrum of Si detector (Inclusive DDX data .vs. Multiple ions emission)

Exp.data : J. Barak et al., IEEE Trans. on Nucl. Sci. 43, No.3 (1996) p.979; *ibid.*, 47. No.3 (2000), p.545.

Summary

- Overview of nucleon-induced single-event upset phenomena
- Calculation of SEU cross sections using the semiempirical model based on the sensitive volume concept
- Influences of the nuclear data on SEU simulation:
 (a) n-SEU vs p-SEU
 (b) elastic scattering
 (c) secondary reaction products
 (d) multiple ions emission : inclusive vs exclusive

- More measurements of DDXs of secondary ions over the wide mass range are required for testing the predictions of reaction models and their refinement.
 - H. Machner et al., PRC 73, 044606 (2006): He, Li, Be, B from 200 MeV p+Al

Proposal of a new experiment using the inverse kinematics @RIBF, RIKEN \rightarrow ²⁸Si(¹H,X)

Critical charge for SRAM

P. Shivakumar et al., Int. Conf. on Dependable Systems and Networks, IEEE Proc. (2002).

Improvement of QMD calculation

Future : energy-deposition process

Spatial distribution of initially-deposited charges

